Structure of Atom

1. Assertion (A): 2p orbital do not have any spherical node.

Reason (R): The number of nodes in porbitals is given by (n-2) where n is the principal quantum number.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **2. Assertion (A):** The radii of corresponding orbitals in all H-like particles are equal.

Reason (R): All H-like particles contain more than one electron.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3. Assertion (A):** The number of radial nodes in 3s and 4p orbitals is are equal.

Reason (R): The number of radial nodes in any orbital depends upon the values of 'n' and 'l' which are different for 3s and 4p orbitals.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

4. Assertion (A): Electrons are ejected from a certain metal when either blue or violet light strikes the metal surface. However, only violet light causes ejection from second metal.

Reason (R): The electrons in the first metal require less energy for ejection.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **5. Assertion (A):** Hydrogen has one electron in its orbit but it produces several spectral lines.

Reason (R): There are many excited energy levels available.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **6. Assertion (A):** The energy of an electron is largely determined by its principal quantum number.

Reason (R): The principal quantum number (n) is a measure of the most probable distance of finding the electron around the nucleus.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

7. Assertion (A): The 19th electron in potassium atom enters into 4s-orbital and not the 3d-orbital.

Reason (R): (n + 1) rule is followed for determining the orbital of the lowest energy state.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **8. Assertion (A):** The free gaseous Cr atom has six unpaired electrons.

Reason (R): Half-filled s-orbital has greater stability.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **9. Assertion (A):** The atoms of different elements having same mass number but different atomic number are known as isobars.

Reason (R): The sum of protons and neutrons in isobars is always different.

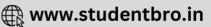
- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

Assertion (A): A beam of electrons deflects more than a beam of
α – particles in an electric field.

Reason (R): Electrons possess negative charge while α – particles possess positive charge.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **11. Assertion (A):** In Lyman of H-spectra, the maximum wavelength of lines is 121.65 nm.

Reason (R): Wavelength is maximum if there is transition from the very next level.


- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **12. Assertion (A):** The number of radial nodes in 3s and 4p orbitals is not equal.

Reason (R): The number of radial nodes in any orbital depends upon the values of 'n' and 'l' which are different for 3s and 4p orbitals.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

13. **Assertion (A):** The energy of an electron is largely determined by its principal quantum number.

> Reason (R): The principal quantum number (n) is a measure of the most probable distance of finding the electron around the nucleus.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 14. **Assertion (A):** Hydrogen electron in its orbit but it produces several emission spectrum lines.

Reason (R): There are many excited energy levels available.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 15. Assertion (A): The electronic configuration of Cr is [Ar]3d⁴4s²

Reason (R): Cr is filed according to aufbau principle.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

Assertion (A): Fe³⁺ ion has more stable 16. electronic configuration than Fe2+ ion in ground state.

> Reason (R): Fe2+ ion has more no. of unpaired electrons than Fe³⁺

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 17. Assertion (A): Radial probability distribution graph of an electron in 4d subshell consist of one radial node.

Reason (R): d-subshell of any shell contains radial nodes.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **Assertion (A):** $\frac{1}{\lambda} = R_H Z^2 \left| \frac{1}{n_1^2} \frac{1}{n_2^2} \right|$ can be 18.

used to determine the wavelength of an electron in an orbit.

Reason (R): Wavelength associated with

- a photon is given by $\lambda = \frac{h}{\sqrt{2mKF}}$
- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

	ANSWER KEY																	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ans.	1	4	1	1	1	1	1	3	3	2	1	4	1	1	1	3	3	4

